If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+1/3x-10=50
We move all terms to the left:
x+1/3x-10-(50)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
x+1/3x-60=0
We multiply all the terms by the denominator
x*3x-60*3x+1=0
Wy multiply elements
3x^2-180x+1=0
a = 3; b = -180; c = +1;
Δ = b2-4ac
Δ = -1802-4·3·1
Δ = 32388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32388}=\sqrt{4*8097}=\sqrt{4}*\sqrt{8097}=2\sqrt{8097}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-2\sqrt{8097}}{2*3}=\frac{180-2\sqrt{8097}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+2\sqrt{8097}}{2*3}=\frac{180+2\sqrt{8097}}{6} $
| 6s=-s^2-9 | | 4j=-3+5j | | -20.5=y/6-1.3 | | -2x-6=50 | | 40x^2+80x-70=0 | | 3b-5=2b÷6+2 | | 8x-5=5x-26 | | 8z^2-2=-8z | | -8p=-3p+10 | | 2x+71=50 | | c-11/3=2 | | 8q^2+3=0 | | 21x+21=777 | | 2+12x+3=136 | | 2z-8=7+5z | | 2s^2=-8s-8 | | 12=3(d+1) | | 16w^2-84w+63=0 | | 5=2(3+2x) | | 5x+90=120 | | 8s^2+7s+5=0 | | -6y=-5y-10 | | 5x+90=12 | | 4.1+x/5=-8.4 | | -3+w=-9-w | | 6q^2+6q=0 | | 7x-(-13)=20 | | 7(x-5)=6(x-2) | | 8d=9d-5 | | 2.5x-4=x+5 | | 9p^2=2 | | 8d=9d−5 |