If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+1/6x=49
We move all terms to the left:
x+1/6x-(49)=0
Domain of the equation: 6x!=0We multiply all the terms by the denominator
x!=0/6
x!=0
x∈R
x*6x-49*6x+1=0
Wy multiply elements
6x^2-294x+1=0
a = 6; b = -294; c = +1;
Δ = b2-4ac
Δ = -2942-4·6·1
Δ = 86412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{86412}=\sqrt{4*21603}=\sqrt{4}*\sqrt{21603}=2\sqrt{21603}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-294)-2\sqrt{21603}}{2*6}=\frac{294-2\sqrt{21603}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-294)+2\sqrt{21603}}{2*6}=\frac{294+2\sqrt{21603}}{12} $
| x*x+x=56 | | 4x+32=8x+10 | | -3w+7=114 | | 8x^2+32x+3=0 | | 10(6x-7)=8(10x-8) | | n/8+6=58 | | y=2X-8/6 | | 4(2-10n)+7=119 | | 70+70-7*x=126 | | 8=k/5-2 | | 2x^2=127 | | 3/y2=6 | | -3-4i-8+i=0 | | (-4+7n)-10=-6 | | 50=0.75x | | 7x-9=-4/x+1 | | 4c-10=58 | | -4+(8-4n)=8 | | 5^2y=625 | | 55=8+6/x | | 5t²-12t-24=0 | | 7x-25=-53 | | (4-9i)+(1-3i)=0 | | (4+-9i)(41+9i)=0 | | 3(x-2-24=-15 | | 5r+3r-r=6+2 | | a^2+14=51 | | 15=x/3+ | | 4780.33=x+(.07x) | | j/9-13=11 | | 3x-4=4x+7-x | | 9=r+3 |