x+1/8x+1/8x+x=180

Simple and best practice solution for x+1/8x+1/8x+x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+1/8x+1/8x+x=180 equation:



x+1/8x+1/8x+x=180
We move all terms to the left:
x+1/8x+1/8x+x-(180)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/8x+1/8x-180=0
We multiply all the terms by the denominator
2x*8x-180*8x+1+1=0
We add all the numbers together, and all the variables
2x*8x-180*8x+2=0
Wy multiply elements
16x^2-1440x+2=0
a = 16; b = -1440; c = +2;
Δ = b2-4ac
Δ = -14402-4·16·2
Δ = 2073472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2073472}=\sqrt{64*32398}=\sqrt{64}*\sqrt{32398}=8\sqrt{32398}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1440)-8\sqrt{32398}}{2*16}=\frac{1440-8\sqrt{32398}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1440)+8\sqrt{32398}}{2*16}=\frac{1440+8\sqrt{32398}}{32} $

See similar equations:

| (x-1/5)^2=7/5 | | 5+2x=7x-40 | | 4+2p=10(3/5​ p−2) | | 6x+4+3x=67 | | 2{x-1}=1-6x | | 45/(306-5n)=30 | | 8u2+8u+1=0 | | -6/5u=42 | | 2m^2–7m-30=0 | | -6/7=-3u | | 26=3x+6x+8 | | 1/24x^2-54=0 | | -7(3b+4)+(22b-3)=0 | | (502-185)•526=m•526-185•526 | | -3x-6=-39 | | -3*((+x^2-2x+x-2))-6x=0 | | 2x+28+92=180 | | D^4+3d^2-28=0 | | 5z+12=7z+3 | | (11n☻2)+8=30 | | 5y-12=53 | | x^2-30x-148=0 | | 3x+45=69 | | 9-x=4x-5x | | (3x+8)=(12x-4) | | -7(3b+4)+(22b-3)=0+ | | (11n/2)+8=30 | | (k+4)=(3k-6) | | 4|3w+1|–7=-17. | | 5j+3=2j+21 | | (1/2)-(10/49x)=(24/49)-(1/14x | | 7u-33u=24 |

Equations solver categories