If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+1/9x=40
We move all terms to the left:
x+1/9x-(40)=0
Domain of the equation: 9x!=0We multiply all the terms by the denominator
x!=0/9
x!=0
x∈R
x*9x-40*9x+1=0
Wy multiply elements
9x^2-360x+1=0
a = 9; b = -360; c = +1;
Δ = b2-4ac
Δ = -3602-4·9·1
Δ = 129564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{129564}=\sqrt{36*3599}=\sqrt{36}*\sqrt{3599}=6\sqrt{3599}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-360)-6\sqrt{3599}}{2*9}=\frac{360-6\sqrt{3599}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-360)+6\sqrt{3599}}{2*9}=\frac{360+6\sqrt{3599}}{18} $
| 8(x-9)=-2(x+41 | | 0.2x+0.6(x+20)=-8+.4x | | -2q=448 | | 72x=-2 | | 5(4-2k)=24 | | g−548= 4 | | 8f=376 | | 8x-23=2x=37 | | r+631=923 | | 2(m-9)+7=19 | | 16=k/26 | | xx.72=180 | | 5x=130=8x=151 | | 3p=-303 | | Z2=8i | | 2(m−9)+7=19 | | 12−n=15 | | 924=d-202 | | (2x-3)^2=63 | | 1/8(x-24)=4+x | | 16 = k/26 | | 16b+-9b+-6b=-13 | | 5x=1308x=151 | | d/28=28 | | 1/3(x+5)-2/3x=1/x+5 | | h-415=886 | | 18+2x=37 | | 26g=598 | | 2x+3(x+1)=16 | | G(x)=8-x/3 | | d+-333=185 | | -1.2(x+5)=-10 |