x+2=(7-x)(7-x)

Simple and best practice solution for x+2=(7-x)(7-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+2=(7-x)(7-x) equation:



x+2=(7-x)(7-x)
We move all terms to the left:
x+2-((7-x)(7-x))=0
We add all the numbers together, and all the variables
x-((-1x+7)(-1x+7))+2=0
We multiply parentheses ..
-((+x^2-7x-7x+49))+x+2=0
We calculate terms in parentheses: -((+x^2-7x-7x+49)), so:
(+x^2-7x-7x+49)
We get rid of parentheses
x^2-7x-7x+49
We add all the numbers together, and all the variables
x^2-14x+49
Back to the equation:
-(x^2-14x+49)
We add all the numbers together, and all the variables
x-(x^2-14x+49)+2=0
We get rid of parentheses
-x^2+x+14x-49+2=0
We add all the numbers together, and all the variables
-1x^2+15x-47=0
a = -1; b = 15; c = -47;
Δ = b2-4ac
Δ = 152-4·(-1)·(-47)
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{37}}{2*-1}=\frac{-15-\sqrt{37}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{37}}{2*-1}=\frac{-15+\sqrt{37}}{-2} $

See similar equations:

| 4(6-x)-2(3-x)-5=(5-2x) | | 3(r-1)=4(6) | | (+9x^2+3x+3x+1)(+9x^2+3x+3x+1)=16 | | 4/7x3=12/21= | | 1.4-0.6=0.2(5+3z) | | (3x+1)(3x+1)(3x+1)(3x+1)=16 | | 4-b÷2=10 | | 60=1/4g+12;g=12 | | 2c=-13 | | 5=15+x | | 20-2t=1/2t+28;t=-3.2 | | 11=2/3x-1;x=15 | | 4x-6,x=5 | | 100−3x=-50 | | 6x2-40=110 | | 650=x+0,25x | | -23=x-8 | | -3(v-3)=-5v+13 | | -10=2+b | | 49=x^ | | 11=15x=-7+13x | | 3(y+8)-5y=16 | | -7y-18=-5(y+6) | | -7y-18=-5(y+6 | | 5x+5=2- | | -84=7v | | x^=81 | | -2x-6x-7=4x | | u-5.89=7.2 | | 4=-4+s | | 4-4u=-20 | | 13+1x=11x+9 |

Equations solver categories