x+3+4(x-13)+3/4x=66

Simple and best practice solution for x+3+4(x-13)+3/4x=66 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+3+4(x-13)+3/4x=66 equation:



x+3+4(x-13)+3/4x=66
We move all terms to the left:
x+3+4(x-13)+3/4x-(66)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
x+4(x-13)+3/4x-63=0
We multiply parentheses
x+4x+3/4x-52-63=0
We multiply all the terms by the denominator
x*4x+4x*4x-52*4x-63*4x+3=0
Wy multiply elements
4x^2+16x^2-208x-252x+3=0
We add all the numbers together, and all the variables
20x^2-460x+3=0
a = 20; b = -460; c = +3;
Δ = b2-4ac
Δ = -4602-4·20·3
Δ = 211360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{211360}=\sqrt{16*13210}=\sqrt{16}*\sqrt{13210}=4\sqrt{13210}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-460)-4\sqrt{13210}}{2*20}=\frac{460-4\sqrt{13210}}{40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-460)+4\sqrt{13210}}{2*20}=\frac{460+4\sqrt{13210}}{40} $

See similar equations:

| -4y+8=4(2y-2)-2(16+8) | | x^2+8x-20=8 | | (21x+3)°=(14x+2)° | | -25x+3=16x-4 | | 7(3x-2)=6x+16 | | 4x-22=5(4x+2) | | 12m+6=3m+15 | | 6x^2-4x+17=0 | | N^2+20n+9=-7 | | A=8x+78° | | (-3-8i)-(6i)-(3i)=0 | | 4(x+3)=2(x-1)+3(x+1) | | (2i)-8-(-2+1)=0 | | (-5-4i)+(8-7i)=0 | | (-5-4i)=(8-7i)=0 | | 69-12x-x=14 | | -1.55=-x/3.48 | | 6x-102/8=5x | | x+6=9.3 | | x+7)^(2)-11=0 | | 4n-6(-6+5n)=-172 | | 5x/6=x-2 | | 8x-11=2x+4-3x | | 8-7(2x+1)=6x-7 | | 12+3a-7=a | | -2+7(-5p+1)=-135 | | 2.5x-7=-19.5 | | 10(c+14)=3 | | 10(c+14)​ =3 | | 12x^2=18-4x | | (X^2-7x+12×4x+1)=0 | | 3(a+4)=9 |

Equations solver categories