If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+3/2x+(x+45)+(2x-90)+90=540
We move all terms to the left:
x+3/2x+(x+45)+(2x-90)+90-(540)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
x+3/2x+(x+45)+(2x-90)-450=0
We get rid of parentheses
x+3/2x+x+2x+45-90-450=0
We multiply all the terms by the denominator
x*2x+x*2x+2x*2x+45*2x-90*2x-450*2x+3=0
Wy multiply elements
2x^2+2x^2+4x^2+90x-180x-900x+3=0
We add all the numbers together, and all the variables
8x^2-990x+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 2q+3q=-15 | | 32=8(c+6.5) | | 1/2(8m+4)+2=1/3(18m-18) | | 22=3x+4.6 | | 1/2(8m+4)+2=1/3(18-18) | | 3m-(m+1)=6+1 | | -(5m/6)-4=m/2+7 | | 2x+23=7x-7 | | 23-8x=-55 | | 0.10x+0.05=500 | | 0.4x+0.5=-0.7 | | -5m/6-4=m/2+7 | | -5/m-4=m/2+7 | | 4(t+1/3)=3 | | 32=8(c+6.5 | | 35=5/9(f-32 | | -16•h=112 | | 5(5x+6)=-5 | | -8x-16=-2x-10 | | 3/5=1/y | | 10+7q=6q+3 | | 8m=9+5m | | X-5+3(4x-6)+5x=0 | | 12x+144=180 | | 525=4{o.o35} | | 3(4+b)=114 | | 6+2m/3=m/3 | | (3n+6)⋅3+(2n+2)⋅4= | | 2.2=2m+0.3 | | X-(x/8)=3 | | 43/4-(22/5x+51/12)=1/2(-33/5x+11/5) | | 19-13k=17k-5 |