If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+3/4x=140
We move all terms to the left:
x+3/4x-(140)=0
Domain of the equation: 4x!=0We multiply all the terms by the denominator
x!=0/4
x!=0
x∈R
x*4x-140*4x+3=0
Wy multiply elements
4x^2-560x+3=0
a = 4; b = -560; c = +3;
Δ = b2-4ac
Δ = -5602-4·4·3
Δ = 313552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{313552}=\sqrt{16*19597}=\sqrt{16}*\sqrt{19597}=4\sqrt{19597}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-560)-4\sqrt{19597}}{2*4}=\frac{560-4\sqrt{19597}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-560)+4\sqrt{19597}}{2*4}=\frac{560+4\sqrt{19597}}{8} $
| 38x+2=39x-1 | | 2a+11=19 | | 2(v+6)=12 | | 5.5p=21.45 | | 2(t+1)=6 | | (0.3)x=7(x+3) | | 7/x=8.75 | | 5b+20=7b-80 | | -x-28=8-2x | | 3v+13=19 | | 5/7r+15=-15 | | 5^2x=3^4x-1 | | 10x+14=180 | | 5n)=24 | | 2(w+4)=14 | | -2y-8(-5y-5)=6-3(1-y) | | 2x×4=3x-2 | | 4d+14=18 | | 7(v+1)=7 | | .04s=250 | | 35=-14x+15 | | .4s=250 | | 6p+11=16 | | 1/4(8k-4)=1/3(12-6k) | | −t/4=-3 | | 2(p+2)=18 | | -3+4=4x-1 | | 4y+15=5 | | 5x-6=-2x+5 | | 26k=728 | | 8x-10=7x+19 | | 72=3t |