x+3/5x-2=x/x+1

Simple and best practice solution for x+3/5x-2=x/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+3/5x-2=x/x+1 equation:



x+3/5x-2=x/x+1
We move all terms to the left:
x+3/5x-2-(x/x+1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We get rid of parentheses
x+3/5x-x/x-1-2=0
Fractions to decimals
3/5x+x-1-2+1=0
We multiply all the terms by the denominator
x*5x-1*5x-2*5x+1*5x+3=0
Wy multiply elements
5x^2-5x-10x+5x+3=0
We add all the numbers together, and all the variables
5x^2-10x+3=0
a = 5; b = -10; c = +3;
Δ = b2-4ac
Δ = -102-4·5·3
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{10}}{2*5}=\frac{10-2\sqrt{10}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{10}}{2*5}=\frac{10+2\sqrt{10}}{10} $

See similar equations:

| -28=4-8v | | Va=0.6 | | 6(10)+-5-4=x | | x=-2(-5) | | 6(1-2y)+y-4+11(1-2y)+2=180 | | x/3+5=75 | | 20.5=-15.5=(-3.6x)+1.8 | | ^2x2+7x+5^2=0 | | 144=-12+(x+5) | | 6p-24=18 | | 4t+30=2t | | 6÷2a=9 | | y=0.15(3/2) | | 7+x/2=-20 | | C=106p | | 1/xx=0.3 | | a-1÷6-3a+2÷9=1 | | x-1÷6-3x+2÷9=1 | | 3^3x-4=9 | | 34=-6w+4(w+7) | | (1/2)^x-1=8^3x | | 3^7x=1/27 | | 32^2x+4=16 | | -7(40x-17)=8(7+5) | | X/30+y/40=1 | | 4c+55=68.96 | | 6(x+8)=5((x-4) | | X/30+x/40=1 | | 1/2y-9=1/10y | | 2-5x/8=3/5 | | 392.5-78.5x=(x) | | x+0.18x=10000 |

Equations solver categories