If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+3x+(5+x2)=180
We move all terms to the left:
x+3x+(5+x2)-(180)=0
We add all the numbers together, and all the variables
(+x^2+5)+x+3x-180=0
We add all the numbers together, and all the variables
(+x^2+5)+4x-180=0
We get rid of parentheses
x^2+4x+5-180=0
We add all the numbers together, and all the variables
x^2+4x-175=0
a = 1; b = 4; c = -175;
Δ = b2-4ac
Δ = 42-4·1·(-175)
Δ = 716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{716}=\sqrt{4*179}=\sqrt{4}*\sqrt{179}=2\sqrt{179}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{179}}{2*1}=\frac{-4-2\sqrt{179}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{179}}{2*1}=\frac{-4+2\sqrt{179}}{2} $
| -3=-5+n/4 | | x+5x+(12+x)=180 | | 4+2(3x-5)=3(x+1)+2 | | -7+5n=8 | | x+2x+(40+x)=180 | | -2x^+32x-110=0 | | -10x4=280-13x | | (r+3)^=9 | | 4x^+8x=-7 | | x1/4=x3/2 | | x1/2=x+3/2 | | 2g+8=42 | | Y=2n+3 | | 2(p-3)+6=4p-10 | | 70-4x=18x-6 | | x+126+24=180 | | x+78+31=180 | | x+29+61=180 | | -1+5x=9x | | x+3x+(40+x)=180 | | 3/4n-11=-32 | | 5x=180° | | 2z–3=13 | | x+3x+(30+x)=180 | | x+7=13 | | 2(3x-2)+3x+3=34 | | 1/2n+5=12 | | -21=n+(-30) | | 8+n=-10 | | 5n^2=4n+4n^2+5 | | -1/3n=-7 | | (6x+5)+(5x-3)=90 |