x+5/3x+1=x+8/x

Simple and best practice solution for x+5/3x+1=x+8/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+5/3x+1=x+8/x equation:



x+5/3x+1=x+8/x
We move all terms to the left:
x+5/3x+1-(x+8/x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+5/3x-(+x+8/x)+1=0
We get rid of parentheses
x+5/3x-x-8/x+1=0
We calculate fractions
x-x+5x/3x^2+(-24x)/3x^2+1=0
We add all the numbers together, and all the variables
5x/3x^2+(-24x)/3x^2+1=0
We multiply all the terms by the denominator
5x+(-24x)+1*3x^2=0
Wy multiply elements
3x^2+5x+(-24x)=0
We get rid of parentheses
3x^2+5x-24x=0
We add all the numbers together, and all the variables
3x^2-19x=0
a = 3; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·3·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*3}=\frac{0}{6} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*3}=\frac{38}{6} =6+1/3 $

See similar equations:

| 1/5=5/6+y/2 | | x/3+5x=64 | | y/2+5/6=1/5 | | 5y-1+y+51=5y+50-1y | | (.2*y)+y=406 | | 5-2=1/5y-7 | | 1/7g+4=6 | | .2y+y=406 | | (4y/5)-(5/6)=17/30 | | 3/11=-1/2a | | (3y-4)+y=180 | | 10k(k+2)=3k-3 | | y^2=27-6y | | Yx25/56=5/14 | | 6x=2x–(x–4) | | -2=4-3(5n+2) | | 16x2+9=24x | | 0.3m=6 | | 4x(3x)=x+6 | | 5x×3=3x+8 | | (7x-5)^2=175 | | 49s^2-1=0 | | 97+(7x+27)=180 | | 8(x+2)-6=-5(x+2)+3 | | 1/6(2x+5)=10 | | 8(x+2)-6=-(5)(x+2)+(3) | | 3(5x+9)=25 | | (15x-60)=(10x-15) | | -11/19x=12 | | 3(u+3)-6u=12 | | 22(g-1)=2g+18 | | 17=6m+3m*2 |

Equations solver categories