x+5x2+x=1x2+x-x-6x-1

Simple and best practice solution for x+5x2+x=1x2+x-x-6x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+5x2+x=1x2+x-x-6x-1 equation:



x+5x^2+x=1x^2+x-x-6x-1
We move all terms to the left:
x+5x^2+x-(1x^2+x-x-6x-1)=0
We add all the numbers together, and all the variables
5x^2+2x-(1x^2+x-x-6x-1)=0
We get rid of parentheses
5x^2-1x^2+2x-x+x+6x+1=0
We add all the numbers together, and all the variables
4x^2+8x+1=0
a = 4; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·4·1
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{3}}{2*4}=\frac{-8-4\sqrt{3}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{3}}{2*4}=\frac{-8+4\sqrt{3}}{8} $

See similar equations:

| 11=2x-(x+7) | | 45=(x-3)3 | | 65-x=17 | | x/8=-64 | | x/2+9=15* | | -6=p-18 | | 20-0,5=20w | | -12.9x-4.9x=-154 | | 7=5h-2(h=1) | | 20-0,5w=20 | | -9(-5-4c)=9c | | 1.15^x=20 | | 7=5h-2 | | 13-2g=-3 | | -5-10n=6+n | | 5x+6=12x-4=4x+31 | | 8-4u=-8u-8 | | 3k+188-1k=200k-10 | | -x/4-9=7 | | 7x+^x+3=50 | | 1.21=1.1(v-1.2) | | z+(z+-6)+-2=-10 | | 10+2d=14 | | -2=3x+11 | | +15-3m-2m=-45 | | 2.8(y-6)-6=-0.4 | | 3k+188-1k=20k-10 | | 4x-3=8x+6= | | 30^2+16^2=c^2 | | -20=x-14 | | -10m+4=-56 | | 6(2x-4)+9=3(4x+A) |

Equations solver categories