x+61=1/2x+22

Simple and best practice solution for x+61=1/2x+22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+61=1/2x+22 equation:



x+61=1/2x+22
We move all terms to the left:
x+61-(1/2x+22)=0
Domain of the equation: 2x+22)!=0
x∈R
We get rid of parentheses
x-1/2x-22+61=0
We multiply all the terms by the denominator
x*2x-22*2x+61*2x-1=0
Wy multiply elements
2x^2-44x+122x-1=0
We add all the numbers together, and all the variables
2x^2+78x-1=0
a = 2; b = 78; c = -1;
Δ = b2-4ac
Δ = 782-4·2·(-1)
Δ = 6092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6092}=\sqrt{4*1523}=\sqrt{4}*\sqrt{1523}=2\sqrt{1523}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-2\sqrt{1523}}{2*2}=\frac{-78-2\sqrt{1523}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+2\sqrt{1523}}{2*2}=\frac{-78+2\sqrt{1523}}{4} $

See similar equations:

| 7x+4(7x-8)=213 | | 1.3=2y+9.9 | | 6x^2-18=5x^-3x | | 98=-2x-6(5x+21) | | a+57=a+ | | 2x+122=x+22 | | 6÷y-8+5÷y=4/y2-8y | | 3x+29+5x-31+6x=180 | | -2/5x+37=-15 | | 2x-21+2x-49+46=180 | | -194=-2x+3(-4x-18) | | 2(4x−6)+10x=5x−4+13x−22(4x−6)+10x=5x−4+13x−2 | | 2x–21+46+2x-49=180 | | -60=5x-3(x+16) | | 2t–49+2t–21+46=180 | | x/6-4=7 | | 5z-4=8 | | -4x-7(-4x+8)=-224 | | 10d+2=5d-7 | | 11x-1-5x=5x-6 | | 2x+3x-20+2x-10=180 | | 7x+2(2x-7)=-91 | | 4d+$10.00–$4.00=$13.50 | | 593x+8=175 | | 2x+4x-3+33=180 | | 2n+3.2=5.8 | | 5x-5(2x+16)=-20 | | x2–7x+12=0 | | -14x+84=-330+9x | | 2x-16+2x+32=180 | | x-30+2x+x-30=180 | | -5x-1+3x-4=29 |

Equations solver categories