x+7(3x+19)=(x)(3x+4)

Simple and best practice solution for x+7(3x+19)=(x)(3x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+7(3x+19)=(x)(3x+4) equation:



x+7(3x+19)=(x)(3x+4)
We move all terms to the left:
x+7(3x+19)-((x)(3x+4))=0
We multiply parentheses
x+21x-(x(3x+4))+133=0
We calculate terms in parentheses: -(x(3x+4)), so:
x(3x+4)
We multiply parentheses
3x^2+4x
Back to the equation:
-(3x^2+4x)
We add all the numbers together, and all the variables
22x-(3x^2+4x)+133=0
We get rid of parentheses
-3x^2+22x-4x+133=0
We add all the numbers together, and all the variables
-3x^2+18x+133=0
a = -3; b = 18; c = +133;
Δ = b2-4ac
Δ = 182-4·(-3)·133
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-8\sqrt{30}}{2*-3}=\frac{-18-8\sqrt{30}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+8\sqrt{30}}{2*-3}=\frac{-18+8\sqrt{30}}{-6} $

See similar equations:

| 15x=15=0 | | 0,5x-4=x+3 | | 3*(0,5+0,75y)-3y=2 | | 18-y+y=180 | | 3*0,5+0,75y-3y=2 | | (3y-8)/2=27 | | (2x+6)/3=18 | | 3(3x-4)-(3x-4)=6x | | (3x+8)/2=17 | | x-(x-3)(3+x)=10-(x-2) | | x-(x-3)(3+x)=10-(x-2)2 | | (-24)x(+30=0)+52 | | 25×3x=20 | | p-(2p+5)=6 | | 2(2/5x+1)=-18 | | 180=70+(110-5/6x+5/6x) | | 180=70+(110-5/6x)+5/6x | | x^2+6x=-63 | | 180=70+110-5/6x | | 0.7x=88 | | 0.3x=88 | | f=4f-+15 | | e=4e-4 | | P=25x-(17x+250) | | 7-3t=-2 | | P=25x-(17x+1000) | | 6c=4c+3 | | P=30x-(12x+1000) | | a^2-91=0 | | 28+36=14+x | | x3-13x2+50x-56=0 | | 4x/7+6=10 |

Equations solver categories