If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+7+x-3+9+9=2(x-3)(x-4)
We move all terms to the left:
x+7+x-3+9+9-(2(x-3)(x-4))=0
We add all the numbers together, and all the variables
2x-(2(x-3)(x-4))+22=0
We multiply parentheses ..
-(2(+x^2-4x-3x+12))+2x+22=0
We calculate terms in parentheses: -(2(+x^2-4x-3x+12)), so:We add all the numbers together, and all the variables
2(+x^2-4x-3x+12)
We multiply parentheses
2x^2-8x-6x+24
We add all the numbers together, and all the variables
2x^2-14x+24
Back to the equation:
-(2x^2-14x+24)
2x-(2x^2-14x+24)+22=0
We get rid of parentheses
-2x^2+2x+14x-24+22=0
We add all the numbers together, and all the variables
-2x^2+16x-2=0
a = -2; b = 16; c = -2;
Δ = b2-4ac
Δ = 162-4·(-2)·(-2)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{15}}{2*-2}=\frac{-16-4\sqrt{15}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{15}}{2*-2}=\frac{-16+4\sqrt{15}}{-4} $
| 5/6x-8=24 | | x=4x=80 | | 1340/140=x/60 | | 7+x*3=2x-5 | | 2/3y−6=6 | | q-14=28 | | 45.5+0.15(10x)=90.5 | | 6=k-60 | | -3x-9=-2x | | 2y+25=75 | | d-32=117 | | 14(x.x)-(2x-3)(7x+4)=14 | | 2x+4+x=3x-3+6 | | x÷3-3=12 | | f(1)=20-2(1) | | 7^9x=100 | | 2/3x=90-x | | 83=y+7 | | -2.7d-9.03=0.3d+6.79+0.98 | | y=-2−6 | | 8w-15=57w=5.25 | | -40q+18-20q+3-15q+q=180 | | 15x+9=15x+45 | | –g+35=52 | | 8.3q+5.62+7.2q=7q-8.83 | | 4(h+8)=36 | | 2x-3.5=5.1 | | –14t+–5t+–8t−–18t+10t=9 | | x−2x+x−2)(x−3)x=x−34 | | 6x+-5(2x+20)=12 | | 8y^2=19y+15 | | -.48-6.1s=-8.27-8s |