If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x(2)+5=40
We move all terms to the left:
x+x(2)+5-(40)=0
We add all the numbers together, and all the variables
x^2+x-35=0
a = 1; b = 1; c = -35;
Δ = b2-4ac
Δ = 12-4·1·(-35)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{141}}{2*1}=\frac{-1-\sqrt{141}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{141}}{2*1}=\frac{-1+\sqrt{141}}{2} $
| 3b=5b-1/2 | | 7m+19/2-23=0 | | (2x+7)+x=61 | | 3(n-5)/3=21 | | 405=x*5*x | | 405=x(5x) | | 505=x(5x) | | X^3-325x+1500=0 | | 2(3y+1=14 | | 3(x^2)=0 | | 7^n=3^n | | 6+5r=6r-46+5r=6r−4 | | 6+5r=6r−4 | | -b=-2b+8 | | 6q+4=7q+3(q-3) | | 5p=4p+5 | | -v=-10-6v | | -v=-10−6v | | -4+8q=7q | | 0=25-25x | | 2x+3=4.2 | | 8t-10=-14 | | -5t^2-10t+15=0 | | 10=120/x^2 | | n-(8/2=16 | | 6v+v=42 | | f=6(9) | | 6g-3=-15 | | 2h+3=-7 | | 9v+9=17 | | x+5-3=8 | | 9v+-8=17 |