If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x(x+5)=162
We move all terms to the left:
x+x(x+5)-(162)=0
We multiply parentheses
x^2+x+5x-162=0
We add all the numbers together, and all the variables
x^2+6x-162=0
a = 1; b = 6; c = -162;
Δ = b2-4ac
Δ = 62-4·1·(-162)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{19}}{2*1}=\frac{-6-6\sqrt{19}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{19}}{2*1}=\frac{-6+6\sqrt{19}}{2} $
| 3+3f=15 | | 28x+2=56 | | 25x+8=108 | | 3=2c-7 | | 14x+2=26 | | 5(f-94)=10 | | 2(p-53)=76 | | 6.3=-3+n | | r+187=451157 | | 52=8n+ | | 4(m-81)=60 | | q/7-2=1 | | –6.5x=59.8 | | r+15=451157 | | x2+256=0 | | 12=4h+4 | | 80=8(q+3) | | 10x3=2/5 | | r+15=451 | | 50+30w=250+10w | | 20-3s=14 | | 1x–(2–x)=51 | | 3/8=9/nn= | | (10,–9);m=–2 | | x4+-8x2+48=0 | | b-64/4=5 | | 3/8=9/n | | 0.5(x-22)=7+5x | | 3/2p=9 | | 4+v=8 | | d-73/2=9 | | 9(q-95)=36 |