x+x+(3/4)x=595

Simple and best practice solution for x+x+(3/4)x=595 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+x+(3/4)x=595 equation:



x+x+(3/4)x=595
We move all terms to the left:
x+x+(3/4)x-(595)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+x+(+3/4)x-595=0
We add all the numbers together, and all the variables
2x+(+3/4)x-595=0
We multiply parentheses
3x^2+2x-595=0
a = 3; b = 2; c = -595;
Δ = b2-4ac
Δ = 22-4·3·(-595)
Δ = 7144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7144}=\sqrt{4*1786}=\sqrt{4}*\sqrt{1786}=2\sqrt{1786}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1786}}{2*3}=\frac{-2-2\sqrt{1786}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1786}}{2*3}=\frac{-2+2\sqrt{1786}}{6} $

See similar equations:

| 8x^2-7=11x^2+5 | | 511=-7(10x–13) | | 2(4x+3)=10x+-2 | | .2(z+5)+4=-12 | | 3n=2n-8 | | 14=-3x-3(-3x+11) | | 2x^{2}-19x+35=0 | | 3-6x=13+2x | | x-3x-1=11 | | x+4x+(3/4)x=595 | | 8(8−9c)+18=−62 | | -5x+7x+28=3x+31 | | 2(h-6)+20=-4 | | 180=5x+20+15 | | 2(x+2)+2x=4x+4 | | 0.6x+0.2=1.4 | | -3.24=7+y/8 | | 2(4x+3)=10-2x | | 5x2–7x+8=0 | | (8x+18)+10x=180 | | 4.25-0.25x=3.75 | | 7x-8/x+1=0 | | 2(x+5)=28-3(6+3) | | 9·X-8=11x | | 22+15=d-17. | | 7(1-2x)-5(x+3)=0 | | 0.1125+x=1 | | 10+6=3(2x+5) | | 0.1125+x=x | | 23=n+18 | | 3(x+3)=6x+15 | | 2^(7-5x)=3 |

Equations solver categories