x,5(2x+3)=3(3x+5)

Simple and best practice solution for x,5(2x+3)=3(3x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x,5(2x+3)=3(3x+5) equation:



x.5(2x+3)=3(3x+5)
We move all terms to the left:
x.5(2x+3)-(3(3x+5))=0
We multiply parentheses
2x^2+3x-(3(3x+5))=0
We calculate terms in parentheses: -(3(3x+5)), so:
3(3x+5)
We multiply parentheses
9x+15
Back to the equation:
-(9x+15)
We get rid of parentheses
2x^2+3x-9x-15=0
We add all the numbers together, and all the variables
2x^2-6x-15=0
a = 2; b = -6; c = -15;
Δ = b2-4ac
Δ = -62-4·2·(-15)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{39}}{2*2}=\frac{6-2\sqrt{39}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{39}}{2*2}=\frac{6+2\sqrt{39}}{4} $

See similar equations:

| (3/x(x+3))-(1/x)-(4/(x+3))=0 | | 6x+2(x-1)=18 | | 18-(3p-6)=21-(5p-8) | | 0.4x8=3.2 | | -5(-5+4a)=-23-7a | | 5/2v-3/2=-4v-1/3 | | 4e-5=-11 | | 0,2x-0,5=0,1 | | 1053=-9(10r-7 | | 6v-2+2(4v+1)=-2(v+4) | | 37+10x=x-17 | | 2x+74=102 | | 5x+(-x)-1=1=11-2x | | 6x*8x=2473392 | | 2(y+1)=-7y-7 | | 7/9+-7/9=x | | 2(y=1)=-7y-7 | | -31h=1519 | | 7=0.875x | | 2x+2x=24x+2 | | -4(-2x-2)+x-2=−4(−2x−2)+x−2= | | 4(4-4k)=10-19k | | 4x+3=220 | | 44-5y=-32 | | 3x*4x=5947392 | | 115+x+160=360 | | -120=-52+b | | 6(v-5)=10(v) | | y=-38-6 | | 2.5x+3.25x+7=6.3-0.15 | | 4m+5=21,4 | | -8(-6c-7)=4c-560 |

Equations solver categories