x-(2/5x)+21=40

Simple and best practice solution for x-(2/5x)+21=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-(2/5x)+21=40 equation:



x-(2/5x)+21=40
We move all terms to the left:
x-(2/5x)+21-(40)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x-(+2/5x)+21-40=0
We add all the numbers together, and all the variables
x-(+2/5x)-19=0
We get rid of parentheses
x-2/5x-19=0
We multiply all the terms by the denominator
x*5x-19*5x-2=0
Wy multiply elements
5x^2-95x-2=0
a = 5; b = -95; c = -2;
Δ = b2-4ac
Δ = -952-4·5·(-2)
Δ = 9065
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9065}=\sqrt{49*185}=\sqrt{49}*\sqrt{185}=7\sqrt{185}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-95)-7\sqrt{185}}{2*5}=\frac{95-7\sqrt{185}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-95)+7\sqrt{185}}{2*5}=\frac{95+7\sqrt{185}}{10} $

See similar equations:

| x-(2/5x)+21=403 | | x^2+4/x=29/x | | v2+5/2v-7/2=0 | | -4n(2n-1)=0 | | 44=2y+12 | | 3x=426 | | 2x+2(3x+7)=180 | | 4(5x+2)=-5(2x-5) | | 35x-200=-25 | | 6x^2+16x+5=0 | | (n)=6n-4 | | 7(-3x-2)=49 | | 12x-3x=4x+45 | | 2x+2(3x-26)=180 | | 9x+6=7x+15x= | | x-(2/5x)+21=x+(1/8x) | | 3x/23=48/92 | | 40=4u-8 | | P^2+4p=10 | | 5(x-2)=x+2x+1 | | 8n2+3=-8 | | 4.8=1.2x-1.2 | | x-2/2=4/5 | | 7x-5x+7=4x-1 | | -0.65a+8=3.9 | | 9x+x-2x-7=4x+6+3 | | -0.65(a+8)=3.9 | | 1(x+2)-(1)x-(-1)=3+0x | | 3x+12=20+2x | | -4(x+7)=24 | | 1(x+(-2))=(-6)x+4 | | 5^3x=28.8 |

Equations solver categories