x-(4x-7)=5x-(x+21)4x

Simple and best practice solution for x-(4x-7)=5x-(x+21)4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-(4x-7)=5x-(x+21)4x equation:



x-(4x-7)=5x-(x+21)4x
We move all terms to the left:
x-(4x-7)-(5x-(x+21)4x)=0
We get rid of parentheses
x-4x-(5x-(x+21)4x)+7=0
We calculate terms in parentheses: -(5x-(x+21)4x), so:
5x-(x+21)4x
We multiply parentheses
-4x^2+5x-84x
We add all the numbers together, and all the variables
-4x^2-79x
Back to the equation:
-(-4x^2-79x)
We add all the numbers together, and all the variables
-(-4x^2-79x)-3x+7=0
We get rid of parentheses
4x^2+79x-3x+7=0
We add all the numbers together, and all the variables
4x^2+76x+7=0
a = 4; b = 76; c = +7;
Δ = b2-4ac
Δ = 762-4·4·7
Δ = 5664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5664}=\sqrt{16*354}=\sqrt{16}*\sqrt{354}=4\sqrt{354}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-4\sqrt{354}}{2*4}=\frac{-76-4\sqrt{354}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+4\sqrt{354}}{2*4}=\frac{-76+4\sqrt{354}}{8} $

See similar equations:

| 4x^2+68=0 | | -2x^2+5=90 | | 3x+-2x=20 | | 1/2k-(k+1/2)=1/4(k=2) | | -10+m–10=10–2m | | 2x+4=-6x-52 | | 2a+6/4=-10 | | 4y+1y-1=-23 | | 0=-x^2+22x-85 | | -2x+5=90 | | 6z=8z+8 | | 4x+4+10x-14=74 | | 6+2x=5x-6 | | 15x=12x+12 | | -24=2/8p | | 10b-2=5b | | 2(-4x+3)-2x=16 | | 8+7u=8u | | -6x-7=23+4x | | 7(50)+12x=1286 | | 5^6x-32=25x | | 9x+2=1x+0 | | -(x+7)+2(2x-5)=-20 | | j+15.64=-13.26 | | 2+3/5b=7/10b | | 7x+3=x-57 | | X+12=2x+15 | | -2(4g-5)=26 | | 9x+0=8x+7 | | 13-3n=2 | | 1x-2=9 | | 12《2x+2=22 |

Equations solver categories