x-(75/100*x)=600

Simple and best practice solution for x-(75/100*x)=600 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-(75/100*x)=600 equation:



x-(75/100x)=600
We move all terms to the left:
x-(75/100x)-(600)=0
Domain of the equation: 100x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x-(+75/100x)-600=0
We get rid of parentheses
x-75/100x-600=0
We multiply all the terms by the denominator
x*100x-600*100x-75=0
Wy multiply elements
100x^2-60000x-75=0
a = 100; b = -60000; c = -75;
Δ = b2-4ac
Δ = -600002-4·100·(-75)
Δ = 3600030000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3600030000}=\sqrt{490000*7347}=\sqrt{490000}*\sqrt{7347}=700\sqrt{7347}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60000)-700\sqrt{7347}}{2*100}=\frac{60000-700\sqrt{7347}}{200} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60000)+700\sqrt{7347}}{2*100}=\frac{60000+700\sqrt{7347}}{200} $

See similar equations:

| x-75/100*x=600 | | F(a)=a²-6 | | 4(5x−2)=6(2x−4) | | -6x=-3/2 | | 2x=540-3x | | 540-2x=x | | 4c-3=11 | | -4/9=8/15x | | 6(x-1)+2(x-5)=28 | | 5m-7=8m+1 | | -7(3q+8)=-14 | | 9x-69=-6 | | a2=-5^2-1 | | P=x2-5x | | 3y+2×=-1 | | -1/5x=0.5 | | 5x-40+x+40x+0.5x+50=180 | | 9x÷2x-5-5x=13. | | 5x-40+x+40+1/2x+50=180 | | 5k-7=3 | | (5x-40)+(x+40)+(1/2x+50)=180 | | 6x+1/2x+50=180 | | 3x+4x+x+2x=180° | | 3×9^2x=27^5-x | | 11x=16+8x-7 | | (y=2)(y=5) | | 0.1x=1/5 | | {3}^{x+1}+{3}^{x-1}=30 | | 3/7=x/196 | | 2^3x*3^x-2^(3x-1)*3^(x+1)=288 | | 0.8(2x-6)=0.3+0.9 | | 3y-1/3=5 |

Equations solver categories