x-(x-3)(3+x)=10-(x-2)2

Simple and best practice solution for x-(x-3)(3+x)=10-(x-2)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-(x-3)(3+x)=10-(x-2)2 equation:



x-(x-3)(3+x)=10-(x-2)2
We move all terms to the left:
x-(x-3)(3+x)-(10-(x-2)2)=0
We add all the numbers together, and all the variables
x-(x-3)(x+3)-(10-(x-2)2)=0
We use the square of the difference formula
x^2+x-(10-(x-2)2)+9=0
We calculate terms in parentheses: -(10-(x-2)2), so:
10-(x-2)2
determiningTheFunctionDomain -(x-2)2+10
We multiply parentheses
-2x+4+10
We add all the numbers together, and all the variables
-2x+14
Back to the equation:
-(-2x+14)
We get rid of parentheses
x^2+x+2x-14+9=0
We add all the numbers together, and all the variables
x^2+3x-5=0
a = 1; b = 3; c = -5;
Δ = b2-4ac
Δ = 32-4·1·(-5)
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{29}}{2*1}=\frac{-3-\sqrt{29}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{29}}{2*1}=\frac{-3+\sqrt{29}}{2} $

See similar equations:

| (-24)x(+30=0)+52 | | 25×3x=20 | | p-(2p+5)=6 | | 2(2/5x+1)=-18 | | 180=70+(110-5/6x+5/6x) | | 180=70+(110-5/6x)+5/6x | | x^2+6x=-63 | | 180=70+110-5/6x | | 0.7x=88 | | 0.3x=88 | | f=4f-+15 | | e=4e-4 | | P=25x-(17x+250) | | 7-3t=-2 | | P=25x-(17x+1000) | | 6c=4c+3 | | P=30x-(12x+1000) | | a^2-91=0 | | 28+36=14+x | | x3-13x2+50x-56=0 | | 4x/7+6=10 | | 1.24x-0.03x=20000 | | 180=x-(90-20) | | 180=x(90-20) | | 1.2x-0.03x=20000 | | 5(y+8)=55 | | 3,000,000,000,000x=100,000 | | 14-3(2x-8)=68 | | 6x5+x4-43x3-43x2+x+6=0 | | 4x+2²=28 | | 7x²=6x | | x-1/6x=800 |

Equations solver categories