x-15=7-5(x-4)x=

Simple and best practice solution for x-15=7-5(x-4)x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-15=7-5(x-4)x= equation:



x-15=7-5(x-4)x=
We move all terms to the left:
x-15-(7-5(x-4)x)=0
We calculate terms in parentheses: -(7-5(x-4)x), so:
7-5(x-4)x
determiningTheFunctionDomain -5(x-4)x+7
We multiply parentheses
-5x^2+20x+7
Back to the equation:
-(-5x^2+20x+7)
We get rid of parentheses
5x^2-20x+x-7-15=0
We add all the numbers together, and all the variables
5x^2-19x-22=0
a = 5; b = -19; c = -22;
Δ = b2-4ac
Δ = -192-4·5·(-22)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-3\sqrt{89}}{2*5}=\frac{19-3\sqrt{89}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+3\sqrt{89}}{2*5}=\frac{19+3\sqrt{89}}{10} $

See similar equations:

| a+40+a+20+10a=180 | | 8+7c=9c−10 | | 8+8v+9=5v-10 | | 50+35+b+45=180 | | 159+2h=1061 | | 8+8v+9=5v−10 | | V+19+54+v+45=180 | | 6(u-1)=6u+4-2(-5u-2) | | 1/250=3/x | | y=3(-8/10y)-3 | | 319-11p=16.5p | | 3/48=x/80 | | (8+9i)(2-i)-(1-i)(1+i)=A | | 5/15=x/45 | | –7y+9=–8y | | 3x+9+10x-4=90 | | 11k-18+17k+-5k-18k+-14=1 | | 10-7h=-5h-6 | | 31p+19p+10p=180 | | 7g-6g+3g-3g=14 | | 34+50+45f=4F | | a2+100=144 | | -7w+-9w-(-8w)+-16w-(-16w)=16 | | Y-20+2y-20+y-12=180 | | h/6-79=88 | | 14w-8=13w+22+7w | | 33+t/t=-11 | | 2u-18+2u-20+2u-10=180 | | 24/16=48/t | | 7/z=2/10 | | -2=9+c/8 | | 2s+3s+70=180 |

Equations solver categories