x-2/x-1-5/x+2=7/x-1

Simple and best practice solution for x-2/x-1-5/x+2=7/x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-2/x-1-5/x+2=7/x-1 equation:



x-2/x-1-5/x+2=7/x-1
We move all terms to the left:
x-2/x-1-5/x+2-(7/x-1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x-1)!=0
x∈R
We add all the numbers together, and all the variables
x-2/x-5/x-(7/x-1)+1=0
We get rid of parentheses
x-2/x-5/x-7/x+1+1=0
We multiply all the terms by the denominator
x*x+1*x+1*x-2-5-7=0
We add all the numbers together, and all the variables
2x+x*x-14=0
Wy multiply elements
x^2+2x-14=0
a = 1; b = 2; c = -14;
Δ = b2-4ac
Δ = 22-4·1·(-14)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{15}}{2*1}=\frac{-2-2\sqrt{15}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{15}}{2*1}=\frac{-2+2\sqrt{15}}{2} $

See similar equations:

| 6x÷3=20 | | 2x+5-10×=77 | | 7-8x=2x=3 | | -4(x-3)-4x=4-8(x+4) | | n/10+13=27 | | -x=2x-2 | | 5g+8=-40 | | 4(4x-1)=-3 | | 2k(k+8)=0 | | k-1/3=1/9 | | 3x^2-12=63 | | 2w+3w=-1 | | 6.14+r=-13.2 | | 7/4=x/16 | | 12/x=35/100 | | 13×(10+h)=130+26 | | 3=5y+7 | | 49÷y=7 | | 3/4(4/5x-2)-2=11/4 | | 6k-5=k | | 5(6x-15)=305 | | 2-6x+3x=9+7+4x | | 5t-36+t^2=0 | | r^2-14r+53=0 | | 6k+42=3(2k+13) | | (240/y+3)(y-4y)=240 | | 9n-4=21 | | 3w-16=35 | | 22=n•900 | | 96=5u+16 | | X/2+x/5=91 | | -2-3v=-17 |

Equations solver categories