x-2x(12-1/2)=2(4-2x+20)

Simple and best practice solution for x-2x(12-1/2)=2(4-2x+20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-2x(12-1/2)=2(4-2x+20) equation:



x-2x(12-1/2)=2(4-2x+20)
We move all terms to the left:
x-2x(12-1/2)-(2(4-2x+20))=0
We add all the numbers together, and all the variables
x-2x(-1/2+12)-(2(-2x+24))=0
We multiply parentheses
2x^2+x-24x-(2(-2x+24))=0
We calculate terms in parentheses: -(2(-2x+24)), so:
2(-2x+24)
We multiply parentheses
-4x+48
Back to the equation:
-(-4x+48)
We add all the numbers together, and all the variables
2x^2-23x-(-4x+48)=0
We get rid of parentheses
2x^2-23x+4x-48=0
We add all the numbers together, and all the variables
2x^2-19x-48=0
a = 2; b = -19; c = -48;
Δ = b2-4ac
Δ = -192-4·2·(-48)
Δ = 745
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{745}}{2*2}=\frac{19-\sqrt{745}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{745}}{2*2}=\frac{19+\sqrt{745}}{4} $

See similar equations:

| 5-a-a=-1 | | x-1/5=2x+2/14 | | X+2x(x-20)=180 | | v6−7=4 | | 4032n+11=-15+35n | | 9(w-4)=72 | | 9x-15/2=-12 | | (v/6)−7=4 | | 21(2-4)+12y=44 | | Y=1.75x+2.5 | | 4n-26n-20n=12 | | -2(4x-5)+3(3x-6)-2=3-6 | | 111111+59x=4 | | 5-6•1x=-11+2•1x | | 2/3(m-18)=7 | | (z/4)+5=6-(z/4) | | 1/4x-4=3/4x-6 | | -2x-(-5-4x)=5(2x-7) | | 60=-16t^2-+64t+-60 | | 2x/3-8=-4 | | 4x=3x-81 | | 7x-(2x+)=9x+12 | | (2x+4)(x-4)=7 | | 2x/3+-8=-4 | | 2x-8-4x=-6x+9x=4 | | 101=3n+15n-25 | | 3n^2=0 | | 10x-44=4x | | 13-a=7 | | 8(1/2x+5)=84 | | -5n+3(6+7n)=50 | | -2/3(p-2)=4 |

Equations solver categories