If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x-3-((x-3)(5/10))+3=4
We move all terms to the left:
x-3-((x-3)(5/10))+3-(4)=0
We add all the numbers together, and all the variables
x-((x-3)(+5/10))-3+3-4=0
We add all the numbers together, and all the variables
x-((x-3)(+5/10))-4=0
We multiply parentheses ..
-((+5x^2-3*5/10))+x-4=0
We multiply all the terms by the denominator
-((+5x^2-3*5+x*10))-4*10))=0
We calculate terms in parentheses: -((+5x^2-3*5+x*10)), so:We add all the numbers together, and all the variables
(+5x^2-3*5+x*10)
We get rid of parentheses
5x^2+x*10-3*5
We add all the numbers together, and all the variables
5x^2+x*10-15
Wy multiply elements
5x^2+10x-15
Back to the equation:
-(5x^2+10x-15)
-(5x^2+10x-15)=0
We get rid of parentheses
-5x^2-10x+15=0
a = -5; b = -10; c = +15;
Δ = b2-4ac
Δ = -102-4·(-5)·15
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-20}{2*-5}=\frac{-10}{-10} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+20}{2*-5}=\frac{30}{-10} =-3 $
| 1/2x-3/4=9 | | 306= k1 | | 7n^2=56 | | -4(5-x)=20 | | -(x-11)=18 | | 5/3x-1=1/3x+6 | | 4(x-9)-6=-3(-5x+9)-5x | | −2x2−3x+35=0. | | 18+2(x-5)=24 | | -x+6=-x+7 | | -4(3x+5)=-32 | | x+139=132• | | 18+2(x-5)=23 | | -3x-4=-2(x+6) | | 7=12−5t | | 7t=12−5t | | 5(7x+4)=440 | | -3x-4=-2(+6) | | 12(x+3)=2(5x+7) | | 8k−4k−3=13 | | 1/5y+1/3=2.3 | | 2(x-3)÷21=-3 | | X+u=40 | | 10p=-9+11p | | 2.9x-3.2=14.2 | | 2z+7z=18 | | 1/5y+1/3=213 | | -5(-1+2x)=-55 | | 5x^2+9=8x | | s-4+ -1= -5 | | 14q=20+13q | | -1+45x=44+2 |