x-35+x+x-46+1/2x=360

Simple and best practice solution for x-35+x+x-46+1/2x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-35+x+x-46+1/2x=360 equation:



x-35+x+x-46+1/2x=360
We move all terms to the left:
x-35+x+x-46+1/2x-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+1/2x-441=0
We multiply all the terms by the denominator
3x*2x-441*2x+1=0
Wy multiply elements
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $

See similar equations:

| 21980=0,68×20×x×2,5÷1,4(44,6x) | | 3/4n-2=3 | | 6b-6=6 | | 4.8x-2.9x=38 | | 25z^2-100=0 | | 7=3+5x+5 | | 1.66(12z-18)=2z-3 | | 5x-4x+2x=6 | | 7n+5=-9+5n | | 660=2(3.14*51)+2c | | 1.2x+2.0x=16 | | 14+12(0.25y-0.75)=65 | | 0=3(X-5)(2x+3 | | 6(x+1)+3=2x+17 | | -x/6-(-31)=64 | | 5x-1=x+10 | | 5x+3-2x=18-4x | | 72x^2+2x-35=0 | | 100=21.8+a | | 5(m+1)=7(m-1 | | 6x-1=-6x+11 | | 4x+1+2x+3=10x-20 | | 3/4x+2-5/4x=-6 | | 33=15w=3w-w+4w | | 4y^2+13y-12=0 | | 5x9=-3x-12+5x | | 39y+7y^2=18 | | 4/16x-261=1/x^2 | | 10/x=5/2x+45 | | -18u-18=-2u-12 | | 4(-4+x)=5x+1/4 | | 3x+5+5x-18=90 |

Equations solver categories