If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x-3=(4/3)(2-x)+6
We move all terms to the left:
x-3-((4/3)(2-x)+6)=0
Domain of the equation: 3)(2-x)+6)!=0We add all the numbers together, and all the variables
x∈R
x-((+4/3)(-1x+2)+6)-3=0
We multiply parentheses ..
-((-4x^2+4/3*2)+6)+x-3=0
We multiply all the terms by the denominator
-((-4x^2+4+x*3*2)+6)-3*3*2)+6)=0
We calculate terms in parentheses: -((-4x^2+4+x*3*2)+6), so:We add all the numbers together, and all the variables
(-4x^2+4+x*3*2)+6
We get rid of parentheses
-4x^2+x*3*2+4+6
We add all the numbers together, and all the variables
-4x^2+x*3*2+10
Wy multiply elements
-4x^2+6x*2+10
Wy multiply elements
-4x^2+12x+10
Back to the equation:
-(-4x^2+12x+10)
-(-4x^2+12x+10)=0
We get rid of parentheses
4x^2-12x-10=0
a = 4; b = -12; c = -10;
Δ = b2-4ac
Δ = -122-4·4·(-10)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{19}}{2*4}=\frac{12-4\sqrt{19}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{19}}{2*4}=\frac{12+4\sqrt{19}}{8} $
| 345=5x3 | | 3(x-7)+12=0 | | -2(2x+5)=-4x-10 | | 189x+6x2−3x3=0 | | F(x)=30x/100-x | | 90=382+3x | | 1/8x-1/2=-1/2x-1/2 | | 2-4x=-7x+5 | | 7-2(6p+2)=p+8 | | 5(3y+5)+11=6(2y+1)-2 | | (2^3x+1)=128 | | x-3x=x-1 | | 11x-65+29=90 | | 8=-1/3(-12)+x | | X-8y=-20;(3,-4) | | 6a+9a-1/2=7-5a+10a | | -4+10y+7=14+13y-17 | | 6(x-2)-2x=4 | | -x(5x+6)=-18 | | 14-2x=-7x+4 | | 7x-24=6x | | -x(5x+6)=18 | | 5=2(x-4)+1 | | 2x^2-10+4x-11=180 | | 2x^2-10=4x-11 | | 2/5=m/70m= | | x^2+3x+(5)/(4)=0 | | 3b=15b= | | 17.3/4q-7=8 | | 7=7(1)+x | | X+4°53+3x+8°12=180 | | 10/15x-3/15x=x-1 |