x-7(6+x-7)=x(5+x)

Simple and best practice solution for x-7(6+x-7)=x(5+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-7(6+x-7)=x(5+x) equation:



x-7(6+x-7)=x(5+x)
We move all terms to the left:
x-7(6+x-7)-(x(5+x))=0
We add all the numbers together, and all the variables
x-7(x-1)-(x(x+5))=0
We multiply parentheses
x-7x-(x(x+5))+7=0
We calculate terms in parentheses: -(x(x+5)), so:
x(x+5)
We multiply parentheses
x^2+5x
Back to the equation:
-(x^2+5x)
We add all the numbers together, and all the variables
-6x-(x^2+5x)+7=0
We get rid of parentheses
-x^2-6x-5x+7=0
We add all the numbers together, and all the variables
-1x^2-11x+7=0
a = -1; b = -11; c = +7;
Δ = b2-4ac
Δ = -112-4·(-1)·7
Δ = 149
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{149}}{2*-1}=\frac{11-\sqrt{149}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{149}}{2*-1}=\frac{11+\sqrt{149}}{-2} $

See similar equations:

| a+a+2a=180 | | a+a+(5/2)a=180 | | X^2+14x-15=23 | | a+a+5/2a=180 | | 4x+188=6x+12 | | x+x+6+x-3=63 | | 26+x^2=64 | | 22=d/2 | | 1/2x+3=1/8 | | 90+50+c=180 | | 90+48+c=180 | | -6/7x+18=-12 | | x^2+16^2=9^2 | | x+(x*0.21)-(x*0.15)=8331.60 | | 7(w-4)-3=-7(-4w+5)-7w | | 2/(z+5)=12 | | 4z-11=47 | | -6/7x+24=-24 | | 16^2x+3=4^x-5 | | 4(2n+4)=6(9n+8)+2 | | 4(7x+18)1/2=4x | | 7(5x+6)=35x+42 | | 3+3c=18 | | (x)-6=-14 | | 10x+11=9x+5 | | 2x-7x=3 | | 55=j+11 | | 4(p-85)=32 | | 23+4y-7=16y-12-5y | | 15/h=9 | | y+-36=24 | | 3u+4(u+4)=33 |

Equations solver categories