x-7/5x+1=x+2/x

Simple and best practice solution for x-7/5x+1=x+2/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-7/5x+1=x+2/x equation:



x-7/5x+1=x+2/x
We move all terms to the left:
x-7/5x+1-(x+2/x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x-7/5x-(+x+2/x)+1=0
We get rid of parentheses
x-7/5x-x-2/x+1=0
We calculate fractions
x-x+(-7x)/5x^2+(-10x)/5x^2+1=0
We add all the numbers together, and all the variables
(-7x)/5x^2+(-10x)/5x^2+1=0
We multiply all the terms by the denominator
(-7x)+(-10x)+1*5x^2=0
Wy multiply elements
5x^2+(-7x)+(-10x)=0
We get rid of parentheses
5x^2-7x-10x=0
We add all the numbers together, and all the variables
5x^2-17x=0
a = 5; b = -17; c = 0;
Δ = b2-4ac
Δ = -172-4·5·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-17}{2*5}=\frac{0}{10} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+17}{2*5}=\frac{34}{10} =3+2/5 $

See similar equations:

| 5x-(3x-2)=10 | | -x4+3x2+10=0 | | 20-k=-6(2k+4) | | 110+62v=66v+14 | | -9+24=n | | 3x-4=2(x+4)=5x | | 8/21=x/50 | | 104+12k=21k-796 | | 30x-25=90x+3 | | 2.n=18 | | U+65=9u+17 | | 7(2+1)=11x-3 | | -x-42=5x | | 9h-15=9-3 | | 3x=+75 | | 10z-15=5z | | 5y+8=32-3y | | -8p+7+9p=14 | | 9r+5=5r+49 | | 5-7x=94 | | 2y+2y=180 | | 8x-3x-24=x+36 | | 4y-8=55-3y | | -6x+3=212 | | 4b+8=3b+17 | | 16=8^x-2 | | 8+9a=3a+10+6a | | 50-3t=4t-37 | | 32x+260=38x | | 5=4-y | | w(-8)=-21 | | 2t-18=22-3t |

Equations solver categories