x/(x+27)+(3x+22)+(4x+11)=180

Simple and best practice solution for x/(x+27)+(3x+22)+(4x+11)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x/(x+27)+(3x+22)+(4x+11)=180 equation:



x/(x+27)+(3x+22)+(4x+11)=180
We move all terms to the left:
x/(x+27)+(3x+22)+(4x+11)-(180)=0
Domain of the equation: (x+27)!=0
We move all terms containing x to the left, all other terms to the right
x!=-27
x∈R
We get rid of parentheses
x/(x+27)+3x+4x+22+11-180=0
We multiply all the terms by the denominator
x+3x*(x+27)+4x*(x+27)+22*(x+27)+11*(x+27)-180*(x+27)=0
We multiply parentheses
3x^2+4x^2+x+81x+108x+22x+11x-180x+594+297-4860=0
We add all the numbers together, and all the variables
7x^2+43x-3969=0
a = 7; b = 43; c = -3969;
Δ = b2-4ac
Δ = 432-4·7·(-3969)
Δ = 112981
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-\sqrt{112981}}{2*7}=\frac{-43-\sqrt{112981}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+\sqrt{112981}}{2*7}=\frac{-43+\sqrt{112981}}{14} $

See similar equations:

| 3x(-4)=(-13) | | 2x⋅23=27 | | 57=-10z+7 | | z^2-18z=-6 | | 19-1.50x=14-2.75x | | 4=w/2.2 | | 34x=034 | | 0.6x=-7.8 | | 40=3n−26 | | (x-3)(2x-10)=0 | | y=-3/2-8 | | 15x+2-3x(2x+1)=90 | | -11=-47-12b | | 1/4x=25/4 | | 2.5+9.75=3+3.25d | | x/2+3x/5=11 | | -5.2=0.4n | | $37.50=w/$3.50 | | 10+6r=15+6r | | (7x-6)°=(5x+4)° | | 7x+21=-2,x+3 | | 1/4x=61/4 | | 289=225+z^2 | | 4(x+8)-3=7x+9-2x | | 4x-45=2x+5 | | a−5.8=9.2 | | x-37=25;x | | q−25=54 | | 9=4+b | | 384=-16t^2=16t | | x^2–2x+1=0 | | 384=-16t^2=160(0)t |

Equations solver categories