If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x/2)^(x^(1/2))
sin(2*x+2)
((abs(x))^0.5)^2+x^2 = 3;x
x
612;4
((abs(x))^0.5)^2+x^2 = 3;x
x
| y=nx-5 | | 5a^2-5b^2= | | x/148=4:1 | | 62=7e^8t | | T=8u^2v | | 8a-5=131 | | 1/2:1/3=n:20 | | a^5-5(a^4)+15ln(a)+4=0 | | y=integral(2*x*exp(-0.5*x)) | | -6=14-1/3 | | -4-10n=16 | | -6=-4x-1/3 | | 7/11=15/n | | 2x-12=6x-8 | | 2=3.14d | | -3x-4=6x+8-17 | | 9r+10=145 | | -29=v-14 | | z/8=1/2 | | 2(x-4)=3x-(2x-12) | | 5a^2-20a-60= | | -4cos(x-(pi/3)) | | 8=4(q+2)+4 | | x(x-2)+2x(x+3)+10=3x(x-1)+31 | | 33=41-x | | 5p+6=15 | | f(x-4)=3x^2-5x+4 | | x^2+y=54 | | -4+n=4 | | 3x-4-x=2x+6 | | b-10=-29 | | ax-7n=v |