x/2-x/3+1=1/6(x+6)

Simple and best practice solution for x/2-x/3+1=1/6(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x/2-x/3+1=1/6(x+6) equation:



x/2-x/3+1=1/6(x+6)
We move all terms to the left:
x/2-x/3+1-(1/6(x+6))=0
Domain of the equation: 6(x+6))!=0
x∈R
We calculate fractions
(-72x^2)/216x+108x^2/216x+()/216x+1=0
We multiply all the terms by the denominator
(-72x^2)+108x^2+1*216x+()=0
We add all the numbers together, and all the variables
108x^2+(-72x^2)+1*216x=0
Wy multiply elements
108x^2+(-72x^2)+216x=0
We get rid of parentheses
108x^2-72x^2+216x=0
We add all the numbers together, and all the variables
36x^2+216x=0
a = 36; b = 216; c = 0;
Δ = b2-4ac
Δ = 2162-4·36·0
Δ = 46656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{46656}=216$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(216)-216}{2*36}=\frac{-432}{72} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(216)+216}{2*36}=\frac{0}{72} =0 $

See similar equations:

| -20=(-4/3)v | | -4x-5=56 | | (2x+6)^3+8=63 | | 4(2x-5)+2x=100 | | p=2320(1.2)9 | | (2x+6)+8=63 | | 4^2x+2=8^x | | 30k-6k=8 | | 2x-10-6x+30=56 | | 13/4-d=14 | | Y=3.4x-2 | | 3y-7+8y-43=5 | | -4(x-5)=56 | | (4x/3)-3=5 | | 7m-1=m+5 | | 1/4(12t+24)=t+39/2 | | -14x-13=-83 | | 2x-5-x-5=56 | | (12t+24)=t+39/2 | | V=(15-2x)(8-2x) | | 102=x2+82 | | 9m-19=3m+1;m=10/3 | | 134-d=14 | | -228=16n | | 12x2-15x=3(4x+15x) | | 3s*3s+6s+2=0 | | 2(-2y+7)=18 | | 25-n=200 | | 0.4x-5=7 | | 3x+2=2x+2*(x+3) | | 30x+10=30 | | -1=0.5x+9 |

Equations solver categories