x/x-3=2x-5/2x+1

Simple and best practice solution for x/x-3=2x-5/2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x/x-3=2x-5/2x+1 equation:



x/x-3=2x-5/2x+1
We move all terms to the left:
x/x-3-(2x-5/2x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x+1)!=0
x∈R
We get rid of parentheses
x/x-2x+5/2x-1-3=0
Fractions to decimals
5/2x-2x-1-3+1=0
We multiply all the terms by the denominator
-2x*2x-1*2x-3*2x+1*2x+5=0
Wy multiply elements
-4x^2-2x-6x+2x+5=0
We add all the numbers together, and all the variables
-4x^2-6x+5=0
a = -4; b = -6; c = +5;
Δ = b2-4ac
Δ = -62-4·(-4)·5
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{29}}{2*-4}=\frac{6-2\sqrt{29}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{29}}{2*-4}=\frac{6+2\sqrt{29}}{-8} $

See similar equations:

| 9y+5=58 | | 32/y=4.Y= | | -1-4n=-19-6n | | 30y3+10y-1=0 | | Y=3t^2+12t+36 | | 4+6x-11=5x+3(x-3)+2 | | x/6=-7-2x/3 | | -20+10b+13b=13b+10 | | 2x-1=1/3+9 | | 6X3=f | | x/x-3=5 | | 9x-14=3x-8 | | 3b+9b+-3b=-18 | | 17g+2=15+3+13g | | p-23=25 | | 3s+26=5 | | 19+10q=-19+8q | | 10j+3j-11j-j=15 | | x^{2}-15x-150=0 | | 14j+2j-11j-4j=13 | | 9m=-12+10m | | -3(2x-4)=-42 | | 5.63+18.7v=-3.62+15v | | 3s−8=7 | | 1/15s-2/3=-2 | | 24x+8=24x+8 | | 6(5)^x=150 | | 187x-32=983 | | =2+3a+8 | | -7n+24=66 | | –7x+17=8x–13 | | -4j-1-14j=6 |

Equations solver categories