x2+(23-x)2=289

Simple and best practice solution for x2+(23-x)2=289 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+(23-x)2=289 equation:



x2+(23-x)2=289
We move all terms to the left:
x2+(23-x)2-(289)=0
We add all the numbers together, and all the variables
x2+(-1x+23)2-289=0
We add all the numbers together, and all the variables
x^2+(-1x+23)2-289=0
We multiply parentheses
x^2-2x+46-289=0
We add all the numbers together, and all the variables
x^2-2x-243=0
a = 1; b = -2; c = -243;
Δ = b2-4ac
Δ = -22-4·1·(-243)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{61}}{2*1}=\frac{2-4\sqrt{61}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{61}}{2*1}=\frac{2+4\sqrt{61}}{2} $

See similar equations:

| -10.74=u-(-11) | | 25^(x+3)=1/0.04 | | 3x+17+5x=7x-10 | | 2x^2+25x-524=0 | | 4x*2-25x=0 | | -5(4c+7)=25 | | 3/4x-7/3x=19 | | -6=2x-35 | | )4x+8=7x+3-3x | | 17/4+4.2y-9/4=2.2y+6-2y-4 | | 5+86=78x+82-40x | | 50x-45=49x | | 2/5x+2/15=13/15 | | 2/3x=-21 | | 4x-5+3x+-4=180 | | 10^2x=10000 | | (-14)+x=28 | | 1.5u-9.59u-1.88=3.56 | | 10x=7x-12 | | 2^2x+128=3*2^x+3 | | 20=100k(100-100) | | 2/3x+2/3+1/5=2/3x | | 18x+2=6(3x+25) | | 3(2x-2)+8=34 | | 2(3w+7)/5=-5 | | -2(x6)=-36 | | 8(3s+9)=288 | | 3(2l+5)=20 | | 4x-2(x-5x)=2(x-5) | | 11+x=41 | | 2(x-6)-12=-3(x | | k2-k=42 |

Equations solver categories