x2+(7+x)2=10*2

Simple and best practice solution for x2+(7+x)2=10*2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+(7+x)2=10*2 equation:



x2+(7+x)2=10*2
We move all terms to the left:
x2+(7+x)2-(10*2)=0
We add all the numbers together, and all the variables
x2+(x+7)2-20=0
We add all the numbers together, and all the variables
x^2+(x+7)2-20=0
We multiply parentheses
x^2+2x+14-20=0
We add all the numbers together, and all the variables
x^2+2x-6=0
a = 1; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·1·(-6)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{7}}{2*1}=\frac{-2-2\sqrt{7}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{7}}{2*1}=\frac{-2+2\sqrt{7}}{2} $

See similar equations:

| 5(u+3)(-u+6)=0 | | 7u+9=-9+9u | | a=27-(-7) | | 3(2x+2)-5-2x=6(x-5)+7+2x | | 13x-(4x+7)+22=4x | | 5/7p=125 | | -10r=9-9r | | a=0-(-53) | | 8x=15x+14 | | -8d=-7d-3 | | a=(-27)-0 | | -5(3+4)=2(-x+3) | | 9(x+2)=10x+12 | | h-57=23 | | x*x+(7+x)(7+x)=10*10 | | -1-3p=-2p | | (1=7x)-6(-7-x)=36 | | 2(6x-8)-9=4x+12 | | a=(-3)-1 | | 2x=32-16 | | 25-15=a | | -8-8h=-6h | | (-17)-(-18)=a | | 4(6x-2)+5x=-13 | | 125x=25,000 | | -31-31=a | | 8=8v+4(v-10) | | 7x=+32=3x+12 | | 21-(-9)=a | | 3×(x-14)+8=8+5×(x-10) | | (-11)-22=a | | 0-10=a |

Equations solver categories