x2+(x+1)2=145

Simple and best practice solution for x2+(x+1)2=145 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+(x+1)2=145 equation:



x2+(x+1)2=145
We move all terms to the left:
x2+(x+1)2-(145)=0
We add all the numbers together, and all the variables
x^2+(x+1)2-145=0
We multiply parentheses
x^2+2x+2-145=0
We add all the numbers together, and all the variables
x^2+2x-143=0
a = 1; b = 2; c = -143;
Δ = b2-4ac
Δ = 22-4·1·(-143)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-24}{2*1}=\frac{-26}{2} =-13 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+24}{2*1}=\frac{22}{2} =11 $

See similar equations:

| 3+4x2-2+7x2=3x2+17 | | x/2+x/2+100=180 | | 6(c+2)-12=56-c | | 3m+10-m=m+11 | | 3x+x+7=57 | | -t/4=-3/ | | 10^n=4.5 | | 7+7x=69 | | 10^n=1000 | | -y+36=0 | | 4g+9=2(g+6)+2g | | 6+5x=200 | | 65x=200 | | (v−3)(v^2+8v)=0 | | (v−3)(v2+8v)=0 | | 7=49^x | | 10x-35x+2=0 | | 6(k+3)=2(4+5) | | -3x+13=-2x+1 | | 6x=14x+56 | | w=0.05*5 | | 3(x-9)+5x=93 | | N+(2n-3)=33 | | 4x(13x)=10 | | x+5x+4x-12=180 | | (4x)(13x)=10 | | 4x*13x=20 | | 5(x+10)-6x=+x+66 | | 12x^2-2x-30=2(2x-3)(4x+1) | | 2x^2+16x-17=0 | | 19x+5=50 | | 45=x^2+5x |

Equations solver categories