If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+-12x+52=0
We add all the numbers together, and all the variables
x^2-12x=0
a = 1; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·1·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*1}=\frac{24}{2} =12 $
| 18x-420=16x | | (2x^2+17x-9)/(2x-1)=0 | | 7d+5=68 | | ƒ(x)=x2+8x+12 | | 23x+12=19x+15 | | 1x+5x=16.24 | | 28+2w=52 | | -5(z-6)=6Z | | x2+2x-2188=0 | | 16+20=-4(2x-9) | | 9d+6d-14d+2=9 | | 3a-a+5a-5=9 | | 9h-63=36 | | 4y-8=5y-4 | | 0.16-0.16x=4x*0.1 | | 3z+6z=-7z-8-8z | | 3x^2+12x+13)=2x+5 | | -13+7x=3x+23 | | 4x-7=6+5x | | 62x=180 | | 12.7=x–3.4 | | (180-16x)+(8x+20)=128 | | 3y=71 | | x+2/6+x-1/3=7 | | (9x+28)=(5x+11)+(3x+22) | | x-1/5=x+1/3 | | 2x+3=(x-2)/3 | | (7x+7)=(2x+17)+(4x+13) | | 3(2x+3=(x-2)/3 | | 6q^2-4q=5q^2-7q+28 | | 3d-2=5-(2d-3) | | 3/5=6/x+4 |