If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+-35x+200=0
We add all the numbers together, and all the variables
x^2-35x=0
a = 1; b = -35; c = 0;
Δ = b2-4ac
Δ = -352-4·1·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-35}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+35}{2*1}=\frac{70}{2} =35 $
| 3n-5=29 | | 4x^2-57x+144=0 | | -3/4u=9 | | |2x−24.8|=32.4 | | -5/8u=-15 | | 2x+9.4=21 | | 3/4/n=7/28 | | 301/4.3=n/3.1 | | 2(m-2)=16 | | 2(x-3)^2+4=42 | | 6(r-1)=r-27+2r | | 11t+4=31 | | x+(2x+84)=180 | | 3(x-9)=x+4 | | 2t−5=−102t−5=−102t−5=−102t−5=−102t−5=−102t−5=−102t−5=−10 | | 2y(y^2-21y-100)=0 | | 5/2X+44=x/2+39 | | 3x+7x+1=2(5x×1) | | 35(19+d)=1365 | | 7*w-2/3=-4/5*w-3/5 | | x2+8x=65 | | 35(19+d)=2065 | | x-(5x-1/3)=4x-3/5 | | 7×w-(2/3)=(-4/5)×w-(3/5) | | -28x=7/8 | | 7w-2/3=-4/5w-3/5 | | -6(x-3)=2x+2 | | R=360x-0.1x^2 | | 25(10+b)=625 | | -.25-4=7/4a-3 | | 7w-(2/3)=(-4/5)w-(3/5) | | 25(10+b)=525 |