If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+-3x+-162=0
We add all the numbers together, and all the variables
x^2-3x=0
a = 1; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*1}=\frac{6}{2} =3 $
| -45+(215)=x | | x-48.763=0 | | -9/10y-3=3/5 | | -193-7x=-16x+185 | | x+2x+4=56 | | (x-1)+(x-6)+(x-5)=-x | | 450+40m=975-65m | | 611 =12p+4 | | 8m+3-3m=23 | | 11=3p+2/3p | | u/3+8=29 | | 5(2x-12)-3(4x-30)=6x-50 | | -6k+4k=-18 | | 2a-5a+7a=20 | | 2(x+1)^2-3=29 | | 5x-7=3x+1=4x | | 2(x-2)+12=62 | | 5x-7=3x+1=4x=30 | | (d²+3)=(d²+2d+1) | | 5(2x+1)=4x-² | | 4x+18+3x-20=180 | | 5x-7=3x+1=30 | | (3x-10)+(2x+2)-(4x-10)=2(5x-20)-3 | | 4(-6x-1)+6x=-(1-4x-3) | | (4x+10)-(5x-5)=-(2x+2) | | 3(x+8)=2(x+7) | | 12=3y+3.2 | | 2(9x+4)=-2(5x+20) | | 11x-17=11x | | 4(3c+6)-2c=-6 | | -2.7=-1.3+0.7x} | | 2(5x+2)=-4(x+6) |