If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+100=125
We move all terms to the left:
x2+100-(125)=0
We add all the numbers together, and all the variables
x^2-25=0
a = 1; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·1·(-25)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*1}=\frac{10}{2} =5 $
| (2c-10)²=100 | | 7^(x+2)=12^(8x) | | x-(19)=15 | | (2m-5)^2=-25 | | -1=4x-4 | | 10p-3=12+4p)-7 | | (X+1)-3=4(x+2) | | -7+10y=43 | | 9x-7=23-x | | x^2=125=0 | | (2c-10)=100 | | ×+3y-4=0 | | 7+3y=38 | | 6(x+4)-8=2x+4(5+x) | | -36=-6r | | 50-7k=3k | | 11^(y+2)=15 | | 13/2.25=x | | a-8=-3/2 | | 5^(-4y)=12 | | -12=-6r | | (3x²+4x)/(2x+9)=5 | | 3/6.75=x/13 | | 6.75/3=13/x | | 5(2c+7)=7(c+5) | | 2k^+64=-24k | | 8/2b=2I | | 10x+4=6x-6 | | y^2+11y=-28 | | -1=-3u+5(u+3) | | 17/x+3/2=-16 | | 3y+6=5y*18 |