If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+10x-432000=0
We add all the numbers together, and all the variables
x^2+10x-432000=0
a = 1; b = 10; c = -432000;
Δ = b2-4ac
Δ = 102-4·1·(-432000)
Δ = 1728100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728100}=\sqrt{100*17281}=\sqrt{100}*\sqrt{17281}=10\sqrt{17281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{17281}}{2*1}=\frac{-10-10\sqrt{17281}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{17281}}{2*1}=\frac{-10+10\sqrt{17281}}{2} $
| 5x+12x=49 | | X2-13x=90 | | d2-19d+90=0 | | 6x+12=2x-20 | | 30x-150=24x | | 2x+44=4x+22 | | 5/7(5.6-21y)=24(5/8-2/3y) | | x2-4x+4=(1-x)(x-2) | | (x^2-9)(3x+6)=0 | | (+x^2-9)(3x+6)=0 | | (x2-9)(3x+6)=0 | | 8x2+9=0 | | 4x-2(3x-7)=5x-7 | | 2x2-34=0 | | 40-3y=28 | | 5y-7/12-y-5/8=5 | | 2x+3=7(x+4) | | 3(2-5x)+3+x-(1+2x)=5x+7 | | 40-2y=26 | | 13(y-0.7)-1.2(y+10)=50y-97.5 | | 40-3y=25 | | x/0.75=135 | | 7+4x/2=x/2 | | 5+8+7=5x | | 3x+45=10x-4 | | 5x-28=28 | | -17-(4x-1)+5*1/3(2-x)=6*1/2 | | 3(4x+8)=5(5x+4) | | 4x-x=135 | | x-4x=-28-14 | | 4x+18=x+5 | | 81x3+100x=180x2 |