If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+10x-820=0
We add all the numbers together, and all the variables
x^2+10x-820=0
a = 1; b = 10; c = -820;
Δ = b2-4ac
Δ = 102-4·1·(-820)
Δ = 3380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3380}=\sqrt{676*5}=\sqrt{676}*\sqrt{5}=26\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-26\sqrt{5}}{2*1}=\frac{-10-26\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+26\sqrt{5}}{2*1}=\frac{-10+26\sqrt{5}}{2} $
| 10p-4p+20=5p-30 | | I10(x+2)=5(x+8 | | 30=11.00+0.06x | | 6(6g/4)=60 | | -5(8x+2)-3x=x+386 | | 3x+1+2x-6=125 | | 491+9x)=76 | | 13+y=-11-3y-20 | | -(x-5)=22 | | 9.99+1.50x=36.99 | | 5+2(x-6)=3(x+2) | | x–7(x–2)=10x+9–x | | 34=2(3+x) | | 12=b/2 | | -4x-47=43-10x | | 2x-4+3x+2=33 | | 2(x+7)=−(3−2x) | | 6(r-5)=-3(3r-5) | | 5n-3n+7=-2n+10+13 | | -153=6x-9 | | 8d+3d=60 | | –x–3(1–3x)=-21+2x | | 2x+23+10x+13=180 | | (2x+3)=11 | | x-9=7+2x-x | | 3c-5(2c-7)=7c | | 8x+30=5x+20 | | 2x-5=3x-(x+3) | | 1/2(-4w+6)=-17 | | 1+11c=11c+1 | | x-1.7=3.4 | | -7w+3(w+5)=7 |