If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+10x=16=0
We move all terms to the left:
x2+10x-(16)=0
We add all the numbers together, and all the variables
x^2+10x-16=0
a = 1; b = 10; c = -16;
Δ = b2-4ac
Δ = 102-4·1·(-16)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{41}}{2*1}=\frac{-10-2\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{41}}{2*1}=\frac{-10+2\sqrt{41}}{2} $
| -3(x+1)=2(x+2) | | 3x-9+4x+6+43=180 | | 34x+7=x+4 | | v+6/4=v+5/3 | | n-5=2n-9 | | 5x-9x-13=-4x+9-13 | | 24+12x=24 | | 10x-2(x-6)=-18 | | -5(x-19)=-10 | | 0.6=0.4-0.2x | | -50-7x=-10x+7 | | (8(16)-14)+(5y+16)=180 | | 5(x-3)+2x=24 | | (4m+-6)/6=-2/3 | | -25=11-6x | | (37+2)+5=(22-y)+5 | | 3a2+8a+5=0 | | 1/4k+1/4k+2=18 | | 1/3(n+2)=1/2(6-n) | | 2(1.5c+4)=-1* | | 1/4k+1/2(1/2k+4)=18 | | 28=y=42 | | -2(x-2)-4-5=29 | | 12c=226 | | -(5/4)a+1/3+4/3=25/6 | | 7x-2x=|20| | | Z2º+8z+16=0 | | 13+8h=11-4h | | 3(x+8)-8x=-16 | | D(x)=x+5÷|x|-x | | 2(10x-10)=60 | | x(x+4)/2=x(x-8)/4 |