x2+122=132

Simple and best practice solution for x2+122=132 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+122=132 equation:



x2+122=132
We move all terms to the left:
x2+122-(132)=0
We add all the numbers together, and all the variables
x^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $

See similar equations:

| 77^x-(10^x)=0 | | 5x-162=14x+72 | | 3x=19/3 | | 7m-2(-2m+3)=8-(3m-10) | | 5y+9-9=34-9 | | 7y+5-2y=25 | | 5x+(0x-4)=195 | | 77^x=10^x | | 1/7(7y+28)-6=-1/8(16y-56) | | 9±55+5c=10-c | | 37=7.3/x^2 | | 11(7)^x=5(2)^x | | 156=4(4-5p) | | 1/4x=x-(4x+1) | | u-3/8=9 | | -8n+19=7n-8 | | -4x+6x+12=20 | | -4-12=5y+24 | | 8(2x−2)=7(3x+2) | | (17x+1)²=4 | | 2(x+8)=7x-24 | | 0.3x^2-1.8x=0 | | 6t=3t+12+t | | 12.21=2g+3.99 | | 16t=16t^2 | | 5/6x+21=-1/3(2x-9) | | 48x+48x=112 | | 8a+5a=-91 | | P=V*P*g/V*g | | 17x+1=-2 | | -29=9-6k-2k-24 | | 6(x-1)/8=3(x+)/6 |

Equations solver categories