If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+12x+1=0
We add all the numbers together, and all the variables
x^2+12x+1=0
a = 1; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·1·1
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{35}}{2*1}=\frac{-12-2\sqrt{35}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{35}}{2*1}=\frac{-12+2\sqrt{35}}{2} $
| t+1.3/2=-1.5 | | 58+3x-8=8x | | (x=3) | | 3-1x=5-3x | | 2×45+5x=175 | | 6(9x+2)=54x-8 | | 16=7-4n-5n | | 350=(x+20)(x-5) | | -4(6+x)=-116 | | 15=6x-9+6 | | 4(v+42)=–96 | | 6x–5=10 | | 5x/45=125 | | 3x-6+5x-10=80 | | 3(y-1)=7y+1-2(-3y-5) | | x/9=18/36 | | 45+5x=175 | | 7s-24=59 | | 2(w+7)=-3(5w-3)+2w | | -4x-5+10=13 | | 138=-2+7(-3v+8) | | 7s—24=59 | | 2x1=3x-2 | | 9(j−93)=45 | | 13^5/4x=8 | | 13x5/4x=8 | | 56=8(q+2) | | 2w+14=-13w+9 | | 2(3x+4)+86=9x+5-3x+89 | | 2/3(9x-12)=10(x+2) | | 7/5x+1=0 | | 9y-8+2(2y+4)=-5(y+3) |