If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+12x+9=0
We add all the numbers together, and all the variables
x^2+12x+9=0
a = 1; b = 12; c = +9;
Δ = b2-4ac
Δ = 122-4·1·9
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{3}}{2*1}=\frac{-12-6\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{3}}{2*1}=\frac{-12+6\sqrt{3}}{2} $
| 3(x−4)=12x. | | 5/3.5=100/x | | m➗4=13 | | 6(-4t+8)=-8-10t | | 6(6-n)=-6n+36 | | 30=-25x | | -(j-5)=1 | | 2x+17=6x+9= | | -1/3b=2 | | -=205(7+x) | | 60=5/12b | | w^2+24w+13=0 | | 1-3x+5=38+1x | | 7(6x+4)=24x-10x-28 | | -51015=-25x | | –(j−5)=1 | | r/5=-5 | | 57.95=60+50.45m | | 100x100=200 | | -10=-b(4) | | 8(q+4)=96 | | n²-3n-18=0 | | -2(n-5)=0 | | 100x-9.35=50 | | 60+50.45m=+57.95 | | x-52=-18.73 | | 2x^2-2x=15x-30 | | 2(5x+3)-2x=4(2x+3) | | 1.3m-5.6=-1.3 | | (3y-20)+(4y+4)=180 | | 76=(10h+1)-4 | | 39=X(x+5) |