If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+13x=0
We add all the numbers together, and all the variables
x^2+13x=0
a = 1; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·1·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*1}=\frac{0}{2} =0 $
| -7u–2u–8=-7u+8 | | 5y-2=181=3y+3 | | 10u=7u+15 | | -6r=-5-7r | | x+15+4x+40=180 | | 6+6(2t-1)=3-12t | | 5x+4=13-2x | | 3=0.75x+2.75 | | (4x)(x-1)=0 | | -6r=-5–7r | | 1/2x+10=14x+54 | | -2b–5+6b=-b+10 | | -10+2q+6q=6+10q | | -16t^2+96t+1152=0 | | 8-a=-3.5 | | 9-7q=-8q | | 1/10y=-14 | | 2+3s=7+2s | | -2t+2=56 | | 9–7q=-8q | | 2(a-0.3)-3(a-1.3)=4(3a+3.1) | | 9k–3k=12 | | -3+3j=-j+1 | | 8+3r=r | | 1/6-u-13/4-u=0 | | 3(2a-1)=5(4a-1)-4(3a-3) | | -6-9b=-6b-6 | | -2u+1=10-3u | | 4a+10=6a-13 | | 1.4x+6.1=-79 | | 0.5(4a-1)=0.5(2a+2) | | 12w=-144 |