If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+14=63
We move all terms to the left:
x2+14-(63)=0
We add all the numbers together, and all the variables
x^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| 3t=7=-8 | | d/3-66=-48 | | -11(-7x+12)=-x-12(x+11) | | 3x-10=23-6 | | 2(r-4)=5(r+7 | | 14(y-9)+20y=10y-60 | | 2(r-4)=5( | | X+3x+3=-(x+4)+(3x-2) | | 2(n-7)+8=18 | | 6x^2+11x-15=0 | | 11/2x+15+x=190 | | x-5=1-3x | | -4-6v=80 | | 6x^+11x-15=0 | | x+3x+10=2x+2x+10 | | 0.5(1-1.5a)=5.4+a | | 1.13=x-65.1/9.2 | | -(-8)p+(-6)p=-112 | | h+7/4=9 | | 15q–8q–7q+q+q=12 | | -5+2(7x+6)=105 | | 8y-7y+6y=14 | | z/12=4/5z= | | (x-3)(x+7)=3 | | 5x1x=100 | | -23=-2x+7 | | x³=1,728 | | -0.4p-5.16=-3p+2.5(0.9p-2.4) | | 0.10(y-7)+0.02y=0.20y-0.01(50) | | 1.55=x-77.4/9.6 | | 40x+20=180 | | 9u-6u=18 |